手机浏览器扫描二维码访问
“上同调群”是讨论流形闭链(可以想成高维的闭圈)以及它们彼此相交的理论,闭链与流形之中没有边界的子流形有关。
想理解子流形的意思,可以想象一个切成球状的瑞士起司,整个球状的起司块可以想成一个三维空间,而它的内部则可能有上百个洞孔,这些洞的壁面就是子流形,某些可以从外包覆,有些可以用橡皮筋在里面绕一圈。
子流形是有精确形状和大小的几何形体,但对物理学家来说,闭链则是一种基于拓扑考虑,不需要那么明确定义的物件,大部分几何学家将闭链视为广义的子流形。
虽然如此,我们可以将闭链想成类似绕甜甜圈一圈的闭圈,借以得到流形的拓扑信息。
物理学家有一套方法,为给定的流形指定一个量子场论。
流形通常有无穷多个闭链,物理学家用一种逼近法将闭链数降到有限个、因此也比较容易处理的值。
这样的过程称为“量子化”(quantization),将本来有无穷多可能的设定变成只有几个容许值(就好像广播电台的频率)。
这个过程必须对原来的方程式做量子修正,又因为这是一组关于闭链的方程,因此是关于上同调群的方程,所以我才为它取名为量子上同调群。
不过做量子修正的方法并不是只有一种,幸好有镜对称,对于给定的卡拉比—丘流形,可以得到与它物理性质相同的镜伴流形。
这个镜伴流形有两种描述方式,来自两个看起来很不同但基本上等价的弦论版本:ⅡA理论和ⅡB理论,它们所描述的量子场论是相同的。
在B模型时,做量子修正的计算相对简单,而且量子修正为零;而A模型实质上是不可能计算的,量子修正也不是零。
德拉姆发现了一种上同调结构。
这是结合了代数拓扑和微分拓扑的工具。
代数拓扑本是用群论来研究拓扑空间的。
微分拓扑是研究微分流形和可以微分映射的数学分支。
德拉姆把它们结合后,找到了能适合计算和用具体上同调类的方法表达关于光滑流形的基本拓扑信息。
霍奇得知之后,就想用这种工具研究光滑流形,光滑就是这个流形是处处可以微分的。
霍奇主要就是研究光滑流形M的实数上同调群在M上的黎曼度量,使用的工具就是很多个拉普拉斯算子和偏微分算子。
这两种算子也就是可以反映光滑流形的表面和内里的形状变化的。
这就是霍奇理论,到1941年的霍奇理论由魏尔(Weyl)和小平邦彦(Kodaira)整理完成。
喜欢数学心请大家收藏:()数学心
开局成为峰主,打造万古不朽仙门 柯南!快看,你爸爸过来了! 造孽啊,曹贼竟是我自己 大清话事人 沉睡千年醒来,749局找上门 邪灵战神 偏偏宠上你 在明末奋斗 剑神韩友平第一部 开局被渣,反手投资女帝无敌 都市重生:我在七日世界刷神宠 一本杂录 仙骨 春过辽河滩 好运撞末日 尘封的仙路 神奇宝贝:开局十连抽,获得梦幻 包青天断案传奇故事汇 跨越阶层的恋爱 高冷学神之攻略手册
一个转世失败的神农弟子,想过咸鱼般的田园生活?没机会了!不靠谱的神农,会让你体验到忙碌而充实的感觉。师父别闹,就算我病死饿死从悬崖跳下去,也不种田,更不吃你赏赐的美食真香啊!本人著有完本精品农家仙田,欢迎阅读。QQ群42993787...
一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...
...
万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...
一个热爱网络游戏的痴孩子,二不垃及的真神祝愿下进入了游戏的世界。。。。。。...
甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...