手机浏览器扫描二维码访问
第35章谁是张硕?赶紧帮忙讲讲!
当天晚上,张硕收到了弗雷德里希的回复邮件——
“张硕先生,你好。
我是弗雷德里希-约斯特,我审核了你的论文。很抱歉的是,最开始我是带着找问题的心态看的。
因为我不相信。
任何一种非线性偏微分方程,都不可能找到通用算法。
这是我的观点,而你的论文让我改变了看法。
其中,最精彩的部分在于‘证明渐进解’的逻辑,我还特别问了老朋友马克西姆,把那一部分给了他。
你肯定知道他,大名鼎鼎!
马克西姆告诉我,‘证明渐进解’的部分很完善,能形成完善的逻辑闭环,他评价说那一部分非常有意思,还说想认识你。”
邮件的前半部分都是说一下无关的事情,唯一确定的是‘证明渐进解’的逻辑没问题。
后半部分才是主体内容。
“我对于你的论文很感兴趣,并仔细研究了很久。我现如果是涉及到非线性问题,你的算法得出的结果范围就会广泛。
如果涉及到完全非线性的方程,所得出的结果甚至会变得没有意义。
我的判断,对吗?
你的算法还可以更进一步,也就是求得更精确的解的范围吗?”
在邮件的最后,弗雷德里希-约斯特问了两个问题。
一个是‘涉及到非线性问题,算法得出的结果范围就很广泛’,直白来说,就是结果会变得不精准。
另一个就是询问算法是否可以再进一步。
第一个问题非常关键。
偏微分方程可以分为‘线性’和‘非线性’,而‘非线性’也不一定是‘完全非线性’。
方程和方程不同,‘非线性’的程度也存在区别。
线性方程就像是一条笔直的大路,而非线性方程则是公路出现了破损,只要带上了破损,就会被归在‘非线性’范围内。
显然,公路破损程度存在差异,完全破损,看不出公路的形状,就可以称之为‘完全非线性’。
张硕的算法问题在于,非线性的程序越高,所计算出的解的范围也就越大。
比如,线性方程,精确解是1oo,可以求出99~1o1的范围。
某個非线性严重的方程,解的区域是99~1o1,可能求出的是-1oooo~1oooo,只是把解的区域框在了范围内。
虽然针对完全非线性方程,计算结果大到近乎失去意义,但能针对偏微分方程直接求解,就已经是足以令人惊讶的成果了。
张硕思考了一下,给弗雷德里希写了回信,“约斯特先生,伱的判断完全正确。
完全非线性方程的研究包含了诸多的世界难题,为了保证计算结果的准确性,而不是出现错误,只能把结果范围扩大。
如果想要让算法变得更精准一些,可以对方法论文的第二部分参数评估体系进行修改、完善。
那一部分是以方程的参数来模拟人脑运算,得出代入数值的结果。
我的论文中,重要的是模拟人脑运算的方法,而不是更高效的算法。
至于代入变换法和证明渐进解的部分,我已经想不到方法的再进行细化……”
张硕后续又解释了一些算法问题,再整体浏览一遍,确定没什么问题后就把邮件了出去。
……
第二天早上,依旧没有收到回复邮件。
张硕就和黄凯一起去上课了。
长青仙尊 葬天鼎 黑科技:我继承了全宇宙科技遗产 四合院:开局工程师,逼我匀房? 逆世穿越之灵域传奇 科技公司,我成国产之光! 风起白蛇 遮天之大道韶华 我为了少主威严欺负下老婆没错吧 四合院:别不信,我比禽兽还禽兽 大小姐勇闯选秀节目竟成唯一的姐 从生子到女娲分娲的成神之路 大唐极品帝婿 大学刚毕业,我让老师休产假 末世:多子多福,打造了个女儿国 快穿年代女配 惊悚:意外吧?爷会地煞七十二术 穿越古代成农夫小鲜肉特种兵想哭 重生:我不想努力了 重生1998,我不做舔狗后白月光急了
关于异世界狼人领主,我靠魅魔发家部族陨灭,奥古斯带着仅剩的两个族人艰苦奋斗,终于获得了重建村落的机会。在魅魔的庇护下,狼人一族能否重新崛起?危险与机会并存的荒野,兽潮雪灾之下,亚人族的路在何方?黑狼族巨魔族蛇人族…这究竟是怎样的一个世界?血脉战士首领领主…世间还流传着神明的传说。且随奥古斯重建家园,步步为营,感受魔幻世界的神奇吧!...
一个浑浑噩噩的少年,在阳台吹风不小心掉了下去,死过一次的他,决定开始改变,故事从这里开始,他就是林浩...
...
一觉醒来的叶轩发现,自己突然多了个未婚妻...
甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...
注天才冒险脑洞流,绝非修炼秘境苦逼流既无仙宝傍身,亦无圣贤指教,却不可一败。内有玩世不恭的心魔调戏,外有严肃刻板的仙友说教,却要坚守己道。穷得绳床瓦灶,遇事捉襟见肘,却不忘重振王名。仙神斥我狂放不羁,妖魔笑我嚣张逞能,那又如何?一身赤骨战天下,纵横无忌见吾心!...