手机浏览器扫描二维码访问
夜深人静,远处的钟楼敲响了十二下,窗外的城市灯火越发稀疏。
陆兮的房间里,台灯下的光洒在凌乱的书页上,笔记本摊开在她面前,旁边堆满了数论和几何的参考书。
白色的便签贴满了墙壁,上面画满了公式和箭头,像是一张纵横交错的数学地图。
怀尔斯如何通过模形式连接如此复杂的数学结构这个问题,让她夜不能寐。
事实上,这已经是她研读怀尔斯的证明的第二十九天。
摊开在她面前的的不但有原始论文,还有谈岩流形、模形式理论和椭圆曲线相关的参考资料。
她正专注于理解证明中最关键的一环:如何通过谈岩流形将半稳定椭圆曲线与模形式建立起对应关系。
时间一分一秒过去,证明中复杂的概念逐渐在陆兮的脑海中清晰起来。
特别是在理解德林变形理论如何与模形式的p进性质联系时,她忽然想到到了一个有趣的可能性。
如果将拉曼努金模形式的情况套用进来,是否存在一种更直接的几何解释?
这个想法让她士气大振,开始奋笔疾书。
首先,她将拉曼努金模形式的特征多项式写在纸上:
P(x)=x^2+ax+p^(k-1)。
这看上去只是一个简单的二次多项式,但经常回味这个“二次多项式”的人都知道,每一个系数都深藏着模形式与椭圆曲线之间的密码。
如果把这些多项式比作一座大桥,那么每个素数p就像桥墩,而模形式的Hecke特征值便是桥梁的主要结构。
其中k是权重,p是素数。这个多项式与椭圆曲线的局部L因子之间存在某种深刻的联系。
但陆兮没有停在表面的代数关系上。
她开始思考这个多项式在p进分析中的行为。
如果能在p进范数下找到一个合适的度量空间,也许可以直接从几何角度理解模形式的Hecke特征值。
她的笔在纸上快速移动:
“考虑映射φ:X_0(N)→J_0(N),其中X_0(N)是模曲线,J_0(N)是其雅可比簇。在这个框架下,拉曼努金模形式应该对应着J_0(N)中的某个特殊子空间……”
陆兮停下笔,凝视着自己写下的公式。
总觉得这个公式似乎触及到了什么本质的东西。
她思索片刻,忽然想起李教授提到过的一个观点:模形式的美不仅在于其代数性质,更在于它在各个数学分支之间架起的桥梁。
打定主意,她开始构建一个有意思的理论框架。
这个框架的核心引入了一个新的几何结构,她暂时称之为调和度量空间。
在这个空间中,拉曼努金模形式的算术性质可以被翻译成几何语言:
“定义一个新的度量d(x,y)=sup{|f_p(x)-f_p(y)|_p},其中f_p是p进展开系数……”
当时间来到着名的凌晨四点,她终于放下了笔。
灵澜市的最后一张牌 检讨保证书大全 偏爱小娇妻生生世世 心声泄露,作精美人被军官团宠了 灵气复苏,女主她无敌! 斩妖除魔:从庶子开始长生不死 剑影?江湖! 射雕杨康:女侠们,稳住! 二嫁战王后,侯府上下追悔莫及 蔚蓝档案重新的故事 叶罗丽:水王子 绑定抽卡系统后我成了修仙天才 铁血霸弓 四合院之逆天金手指 萝莉应龙的异世之旅 捡到一岁小福宝,流放生活开挂了 西游:枪法也是法,弹道也是道 梦界回档 女友卷款逃跑,阿姨赔偿 混元典
万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...
...
一个浑浑噩噩的少年,在阳台吹风不小心掉了下去,死过一次的他,决定开始改变,故事从这里开始,他就是林浩...
一个热爱网络游戏的痴孩子,二不垃及的真神祝愿下进入了游戏的世界。。。。。。...
甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...
新书从斗破开始当大佬求支持!神秘而来的系统,意外的穿越。从最开始的侠岚,到魔幻手机,到铠甲勇士,到斗破苍穹,到成龙历险记,到西游记他将他的脚印留在诸天万界,每一个世界都将会因为他的到来,重新的改写,变得与众不同。(群号126998581)...